

Computing, Information, and Communications Technology (CICT)

Dr. Eugene L. Tu Program Manager eltu@mail.arc.nasa.gov

> TGIR Conference May 22, 2002 Santa Clara, CA

Outline

- Overview
- Scenario/Accomplishments
 - Advanced Computing and Communications
 Systems for Earth Science, Aerospace, and
 Human Spaceflight
 - Autonomy for Future Space Science Missions
- Role of CICT in Technology Development and Maturation

CICT Program Goal

Enable NASA's Scientific Research, Space Exploration, and Aerospace Technology Missions

with greater mission assurance, for less cost, with increased science return

through the development and use of advanced computing, information and communications technologies.

CICT Program Structure

Computing, Networking and Information Systems

Space Communications

IT Strategic Research

Advanced Computing and Communication Systems

512 CPU SGI O2K

1024 CPU SGI O2K

1024 (MIPS R12000)
400 MHz CPUs
800 MFLOP/s per CPU
819 GFLOPS total
8 MByte cache per CPU
8 GByte total Cache

Memory

256 GB main memory

Disk

4 TB FC Raid disks

System Software

OS single system image Single XFS File System Compiler parallel 1024 CPUs wide

Earth Systems Modeling

Earth Systems Modeling

FVCORE 2x2.5@55 Levels (B55)

Virtual Space Station

Space Flight Simulations

LIQUID SUB-SYSTEMS ANALYSIS

Power Head

- Feed line, Turbo-pump
- Preheating/Nozzle cooling
- Weight and life cycle

HIGH-FIDELITY ASCENT SIMULATION

Launch Process

- Start up
- Plume/base heating
- Launch pad

Mission Abort

- -conceptual designs-probabilistic failure prediction
- -trajectory optimization
- -flight performance

Stage Separation

- Multiple body
- Liquid glide-back booster

Need for Autonomy Example: Exploration Surface Operations

Automated Planning & Scheduling

Intelligent Sensing and Reflexive Behavior

Detect science opportunity...

- Solar flare
- Volcanic eruption
- Interesting Mars rock
- Geologic process
- ... and react
- Generate new plan to observe event
- Downlink "interesting" events

Assess environment ...

- Estimate position & pose
- Find safe landing sites
- Find scientifically interesting sites
- ... and react
 - Navigate to site & land safely

Agent Architectures and Distributed Autonomy

Mission Autonomy Challenges

- Low-cost, scalable ground operations for multiple-asset missions.
- Collective planning and scheduling to enable coordinated operations
- Low-bandwidth approaches to onboard coordination.
- Ad hoc networking of existing satellites
- Collective fault detection, isolation and recovery

CICT Technology Development & Application

CICT Role In NASA Technology Flow

Emerging Fundamental Technologies